

PCD3.M6893

IEC-Controller

Cyber Secure, IEC 61131-3

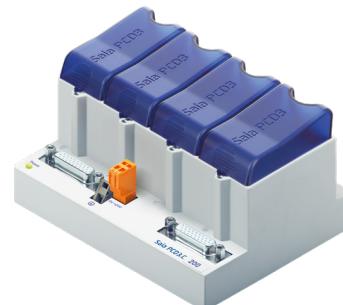
General

The powerful PCD3.M6893 is a cyber secure PLC, programmable in accordance with IEC 61131-3.

The high-level language for structured text (ST) according to IEC 61131-3, has a strong syntax and supports object-oriented methods. Certified to ANSI/ISA 62443, Security Level 3, the PCD3.M6893 delivers robust cybersecurity, making it ideal for mission-critical operations and secure integration with IoT and cloud infrastructures. The modular PLC integrates USB, Ethernet, RS-485 and CAN bus interfaces, ensuring flexible connectivity. It is compatible with the modular and robust I/O system of the SBC PCD3 family, enabling seamless expansion.

In mission-critical automation environments, system downtime can lead to costly disruptions and safety risks. To ensure continuous operation, the PCD3.M6893 QronoX Controllers offer a reliable and efficient redundancy solution. By configuring two controllers in a "Hot Standby" arrangement, uninterrupted system performance is maintained—even in the event of a failure.

In this setup, one PLC actively controls the process while the second remains in standby mode, continuously monitoring inputs and synchronizing with the active unit via a dedicated redundancy link. If the active PLC encounters a fault, the standby unit instantly takes over output control, maintaining seamless operation without disruption.

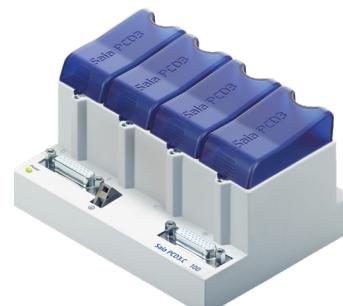


PCD3.M6893

Features

Maximum peripheral connections

- Ethernet and USB-port onboard
- One serial interface RS-485 onboard
- One serial interface RS-485 pluggable on Slot A
- Up to 1024 central inputs/outputs with expansion module holder PCD3.Cx00 (up to 64 modules with max. 16 contact points each). The first module holder must always be a PCD3.C200
- Additional remote input/output can be connected using PCD3.T66x remote IO stations or remote PCD.M6893 controllers



PCD3.C200

PCD3 I/O modules in cassette form

More than 40 I/O modules are available with different functionalities, refer to the order details.

- Status of digital signals indicated via LEDs
- Configurable process image via System Configuration software

PCD3.C100

Efficient programming tools

- IEC programming software QronoX from SBC with integrated System- and Account Management Configuration and comprehensive application components makes programming convenient and efficient.
- A coordinating combination of operating system and programming tool achieves maximum speed, reliability and functionality.

Learn more at www.sbc-support.com

General technical data / Operating conditions

Power supply

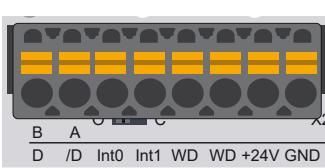
Supply voltage (according to EN/IEC 61131-2)	24 VDC –20 / +25%, incl. 5% ripples
Current / Power consumption (Without the burden of the I/Os)	typ. 175 mA / 4.2 W, max. 500 mA / 18 W
Load-carrying ability 5 V / 24 V internal	max. 600 mA / 100 mA
Short voltage interruption (according to EN/IEC 61131-2)	≤ 10 ms with interval ≥ 1 s

Electrical data

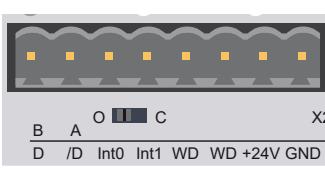
2 Interrupt inputs	24 VDC up to 100 Hz
Watchdog relay closing contact	48 VAC or VDC ¹⁾ , 1 A
Real-time clock (RTC)	Yes, maximum deviation of 1 minute per month at 25°C
Supercap to support the real-time clock	10 days ²⁾

Environmental influences

Storage temperature (according EN/IEC 61131-2)	–25...+70 °C
Ambient temperature operating (according to EN/IEC 61131-2)	0...+55 °C ³⁾ or 0...+40 °C (depending on mounting situation)
Relative air humidity (according EN/IEC 61131-2)	10...95 % r.h., non condensing


Mechanical data

Type of mounting	Top-hat rail according to DIN EN 60715 TH35 (formerly DIN EN 50022) (1 × 35 mm)
Protection level	IP 20
Flame resistance	UL 94 V0
Vibration (according to EN/IEC 61131-2)	3.5 mm / 1.0 g sinusoidally
Shock (according to EN/IEC 61131-2)	15 g / 11 ms sinus half wave


1) Mount a free-wheeling diode over the load when switching DC tension.

2) To extend this period, a PCD3.R010 module may be plugged into one of the four IO slots of the CPU.

3) When assembling on vertical surface, all other mounting methods 0...40 °C.

Switch	Pin	Signal	Explanation
	1	D	Port #2
	2	/D	RS-485 up to 115.2 kbit/s usable as free user interface
	3	Int0	2 interrupt inputs 24 VDC
	4	Int1	
	5	WD	Watchdog
	6	WD	
	7	+24V	Voltage supply
	8	GND	

RS-485 terminator switch for Port #2

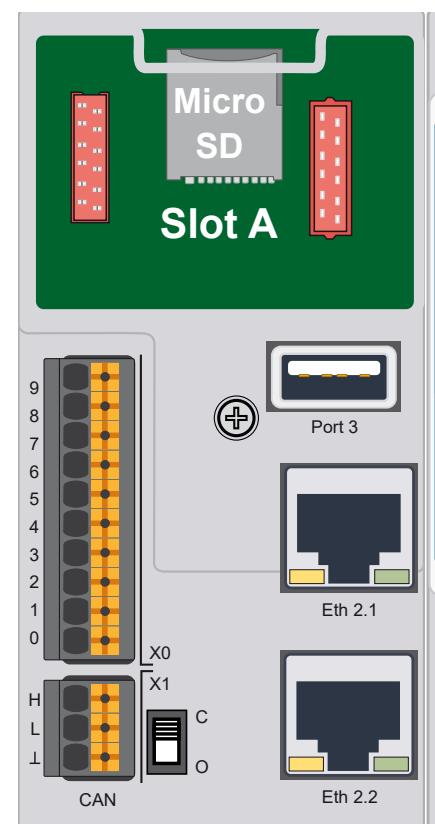
Switch	Switch Position	Designation	Explanation
	left	o	without termination resistors
	right	c	with termination resistors

Communication interfaces

Interface	Marking	Port #	Description
Ethernet 1	Eth 1		Single Port, 10/100 MBit/s
Ethernet 2	Eth 2.1 Eth 2.2		Two ports switched 10/100 MBit/s
USB Device	USB		One port with Remote NDIS driver, a virtual IP port for Programming, Commissioning, Service, and Web access
USB Host	Port 3	3	One port for External Hardware Key/Dongle for software licensing
RS-485	X2 D + /D	2	One port, not isolated for general purpose, up to 115.2 kbit/s, on board bus termination switch
Slot A	Slot A X0	1	One socket for PCD7.F110S or PCD7.F150S communication interface modules
Micro SD	micro SD		One Slot for optional Micro SD card PCD7.R-MSD1024 *
CAN	X1 CAN		One port, galvanic isolated, hardware prepared for CAN 20a and 20b, up to 1 MBit/s, on board bus termination switch (120 Ω)

* The optional file system is required for application programs handling user defined data.

Connections X0 and X1


X0 – Communication interfaces: position Slot A

Pin	PCD7.F110S	PCD7.F150S
	RS-485	RS-485*
0	PGND	PGND
1	Rx-Rx	Rx-Rx
2	/Rx-/Tx	/Rx-/Tx
3		
4		
5	PGND	PGND
6		
7		
8		SGND
9		

* galvanic isolation

X1 – CAN bus terminal

Pin	Signal
H	CAN_H
L	CAN_L
⊥	CAN_GND

Protocol Overview

Protocol	Interfaces	Application note
Engineering tool	Ethernet 1, 2, USB Device	Programming tool communication encrypted. Defaults: Port 11740 USB via RNDIS Driver, see factory set up
Modbus TCP	Ethernet 1, 2	Modbus TCP Server and Client configurable via Software Configurator. A maximum of 64 servers(devices) can be attached to a client(controller). Modbus TCP server(device) can also take over gateway functions to Modbus RTU/ASCII.
Modbus RTU/ASCII	RS-485 Port 2, Slot A* Port 1	Modbus RTU/ASCII Serial Client(Controller)or Serial Server(Device) configurable via Software Configurator
Profinet	Ethernet 1, 2	Station configurable both as Profinet Master and Device via Software Configurator Minimum Communication Cycle time 2 milliseconds.
OPC-UA	Ethernet 1, 2	Address space configurable according to PLC-Open for IEC 61131-3 controllers. Encryption and Authentication are configurable, enabled by default.
User defined	All	User defined protocols can be implemented via the application program based on system low level drivers like SysCom, ...
CAN	CAN	Hardware prepared for CAN 20a, 20b. CAN raw, J1939* and CAN open*.
M-Bus	plug-in PCD3. F27X modules	Client(Controller)-Server(Device) communication on a 2 -wire bus. Star, Line or Tree topology as per standard M-Bus specifications
IEC-60870-5-104	Ethernet 1,2	IEC 60870-5-104 Sever functionality on QronoX, Requires license from Codesys store
IEEE 802.1x	Ethernet 1,2	IEEE standard for Port-based network access control. User needs to enable the feature on ethernet ports (disabled by default)
DALI	plug-in PCD3. F261 modules	DALI Client(Controller), Library is included in the Qronox package
BACnet	Ethernet 1, 2, USB* (BACnet/ IP), plug-in PCD3. F215 module (BACnet MS/TP)	Supported - BACnet IP and BACnet MS/TP, Server/Client functionality; BACnet device profiles: B-BC (BACnet Building Controller); BACnet Protocol Revision: 1.20 (BACnet ANSI/ASHRAE 135-2020, EN ISO 16484-5)

¹ Equipped with a PCD7.F150S or PCD7.F110S.

² For J1939 and CANopen, need to purchase additional license from the Codesys store (<https://store.codesys.com>).

³ USB allows BACnet Browsers to use the PCD as BACnet Router to local BACnet Networks.

BACnet Integration

The Saia PCD3.M6893 PLC delivers advanced communication capabilities with support for BACnet Client and Server over both IP and MS/TP networks. In addition, it incorporates BACnet Router (B-RTR) and BACnet Broadcast Management Device (B-BBMD) functions, providing a robust and scalable solution for seamless building automation and management.

BACnet Client Capabilities:

The QronoX BACnet Client support connections up to 100 external BACnet Servers. These Servers can be field devices like Sensors, Actuators, Unitary Controllers or any other BACnet device. Regardless of the connection via BACnet-IP or BACnet MS/TP.

The QronoX Client shall be set up by the Application Program leveraging the Client Functions from a dedicated interface library, provided by the Engineering Tool.

1. The external BACnet Device will be represented by a Client Function Block. The external Device can be addressed by its Device-Identifier Number or Device Name.

2. Property Function Blocks are set up with an Object-Property Reference for Polling, COV Notification and Writing. At Client-Connect, the BACnet Client firmware will automatically collect all registered Property information to assign appropriate BACnet “Read,” “Write,” and COV-Subscription Services.
3. The Firmware Client-Connect group all properties within the same Client and same Polling Interval in groups of 5 in case the external device support Read-Property-Multiple (DS-RPM) Service; else the firmware will fall back using the Single Read Property (DS-RP) Service.
4. For all configured Read-Properties, the firmware supports issuing up to 32 parallel Write Property (DS-WP) requests. A transaction status will inform the application program about the progress and success.
5. The limits apply to active clients in parallel. In case larger number of Properties shall be processed, serialization of Client Connects is permitted.

For all in parallel active Clients Summary:

- Max. Number of active Clients supported: 100
- In total over all Clients,
 - Max. Number of COV-Subscriptions: 1500
 - Max. Number of Read Property (Multiple) Requests: 200 (DS-RPM support up to 5 Properties)

Note

Only primitive data types will be supported; complex data types are not allowed.

Network Capabilities:

- Maximum number of BACnet packets processed per second: 100
- Maximum number of BBMD devices operating in BBMD mode: 50
- Maximum number of MSTP ports: 4
- Supports BBMD and FD on both Ethernet ports
- Supports BACnet Router across all networks
- Segmentation maximum window size of 16 for both requests or responses.
- MS/TP* Master supported baud rates : 9600, 19200, 38400, 57600, 76800, 115200. (*with optional MS/TP Communication Module – PCD3.F215)

Use 480 bytes for existing PCD3.F215 Firmware – 1.04.06 FW and below, supports upto 2 MS/TP ports per module.

Use 480 and 1476 (long frame) bytes with PCD3.F215 firmware – 1.04.08 FW and above, supports 1 MS/TP port per module.

BACnet Router:

- BACnet/IP - BACnet/IP
- BACnet/IP – BACnet/MSTP
- BACnet/MSTP – BACnet/IP
- BACnet/MSTP – BACnet/MSTP

BACnet Server Functionality

The BACnet Server enables Building Management System (BMS) integration by exposing BACnet objects and notifying subscribers of value changes and event/alarm status updates.

Object Initialization and Configuration

- BACnet Objects can be started from a configuration file (BNT-File) and in run time by firmware interface functions provided from the application libraries “PCDSYS_BACnet” and “PCD_BACnet.”
- BACnet object configurations including their writable Object properties, are automatically persisted by the BACnet stack.

Property Access Performance

Object properties are accessed via Read/Write functions. Each access introduces runtime overhead:

- Read Access: ~4–10 µs
- Write Access: up to ~100 µs

To optimize system performance, recommendation is to:

- Minimize cyclic reads.
- Perform write operations only when necessary.

Supported Object Types

BACnet standard object categories include:

- Data Exchange: Analog/Binary/Multistate Input/Output/Value, Pulse Converter, Accumulator, Average
- Scheduling: Scheduler, Calendar
- Trending: Trend Log (multi-instance), Event Log
- Alarm/Event Notification: Notification Class, Event Enrollment
- Management: Device, Program, File, Network Port, Structured View
- Others: Loop, Group, Command, etc.

Server Capabilities

- 2000 Objects with recommended limit of,
 - » 1 Device, Program, File Object for Backup/Restore
 - » 1 Network Port Object per Interface
 - » 500 Analog Input, Output, Value (per object type)
 - » 1000 Binary Input, Output, Value (per object type)
 - » 100 Multistate Input, Output, Value (per object type)
 - » 500 Integer, Positive Integer Value
 - » 25 Loop
 - » 50 Scheduler
 - » 25 Calendar
 - » 500 Event Enrollment
 - » 25 Notification Class
 - » 100 Trend-Log
 - » 10 Trend-Log-Multiple (10 Values)
 - » 10 Event-Log
 - » 50 Structured View
 - » 25 Command, Averaging
 - » 50 Accumulator, Pulse Converter
 - » 10 Group
- 100 Network BACnet Packets per Second (average)
- Max. 3000 COV, COV-P Subscriptions
- Max. 50 BBMD, FD list entries (per IP-Interface)
- Max. 4 MS/TP Channels on PCD3.F215
 - » Max. 2 MS/TP channels for standard frame length (480 Byte)
 - » Max. 1 MS/TP channel for long frame length (1476 Byte),

(Module Firmware from V1.04.08, Module FW-Download need Classic PCD with Saia PG5 Tool).

For more details, refer to the BACnet “PICS” document.

OPC UA:**Supported Facets:**

- UA Data Access
 - View service
 - Attribute service (read/write)
 - Subscription service
 - Monitored Item service (Absolute Deadband)
- Reverse Connect server facet
- Global Certificate Management (Push Model)
- Events
- UA Security model

Parameter	Description
User Authentication Options	Anonymous, Username + Password
Security Modes	None, Sign, Sign&Encrypt
Security Policies	Basic256Sha256, Aes128Sha256RsaOaep, Aes256Sha256RsaPss

Server Functional Limits:

The list provided outlines the configured limits for the Server functionality, with some parameters being user-configurable, while others are hardcoded.

Note

	The Max Monitored Items value shown here represents the maximum number the Server can instantiate. The actual capacity of active Monitored Items always depends on their sampling interval (Refer to “Server Performance Limits” section in this document).
---	---

Property	User Configurable	Value
Server Minimum Sampling Interval	Y	200ms to 60'000ms
Max no of Sessions	Y	50
Max no of Subscriptions per Session	N	20
Max no of Monitored Items (absolute max)	N	10'000
Server Minimum Publish Interval	N	100ms
Max no of BrowseRef per Node	N	1'000
Max no of Monitored Items Queue Size	N	500
Operation limits		
Max no of Nodes per Read	N	100
Max no of Nodes per Write	N	100
Max no of Nodes per Browse	N	100
Max no of Monitored Items per Call	N	100

Note

	Server Performance Limits: When using OPC UA Data Access, it is essential to consider both the number of Monitored Items and their refresh rate within the system. The recommended limit for Monitored items depends on factors such as available system resources, network bandwidth, and the OPC UA server's processing capabilities.
---	---

Recommended Monitored Items Limit:

Parameter	Description
Recommended Max no of Monitored Items (over all subscriptions)	6000 (@1sec Sampling Interval)

These recommended limits are based on the following working conditions:

- Exclusively OPC UA communication (No other communication over TCP/IP is executed, for example, Modbus or Web Server)
- Sampling Interval: 1000ms
- Publish Interval: 1000ms
- 1 active Subscription
- 1 active Session
- PLC Task cycle time: 100ms
- PLC Task effective execution time: less than 10ms
- No Freewheeling task
- Data type of the monitored variables: DINT (UInt32)

Refer to the “OPC UA System Limits” document on the QronoX portal for more details.

IEC 60870-5-104*

Parameter	Description
IEC 60870-5-104 Server	2
Station address (ASDU)	4
Client (Controller) Connections	4
All-objects	2000

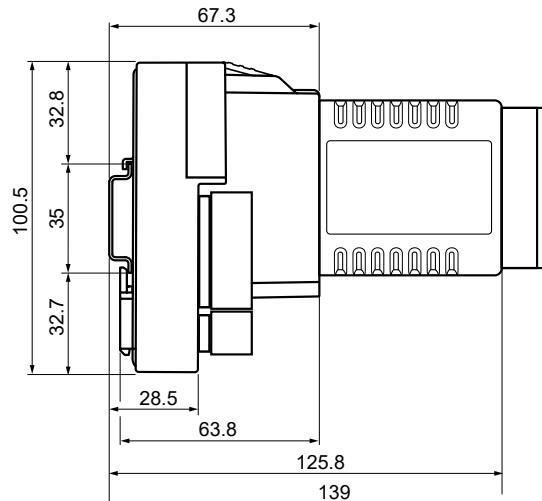
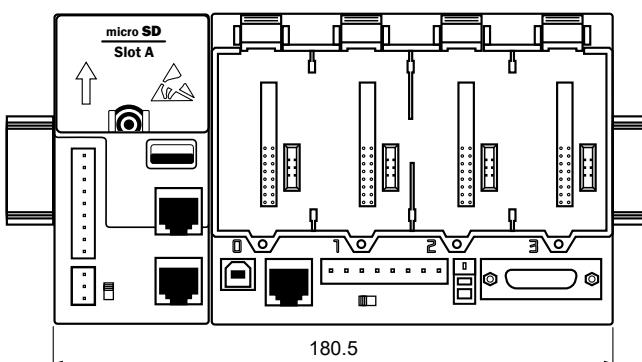
* As per Codesys Release version 1.0.6.0

Application Notes**PLC program**

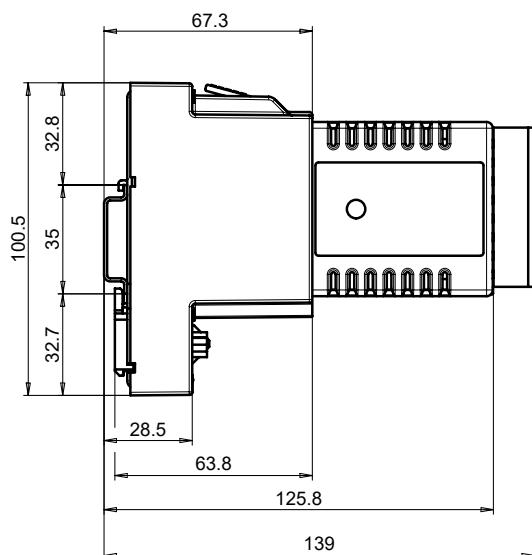
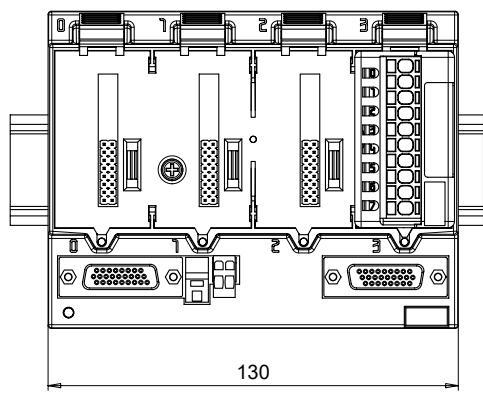
- Program size: 10 MBytes
- Program Memory: 50 MBytes
- Program Memory, persistent none volatile: 128 KBytes

PCD3 I/O Process Image

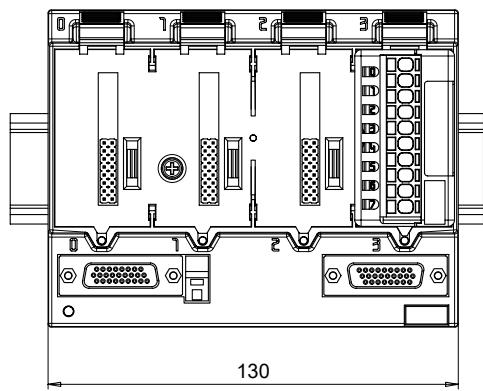
I/O update via process image within one program,



- Bus cycle task configurable, min. 2 ms
- Digital Inputs / Outputs: Update cycle 2 ms
- Analogue Input / Outputs: Update cycle per module (8 channels), multiple analogue module in parallel 50...100 ms

Factory set up

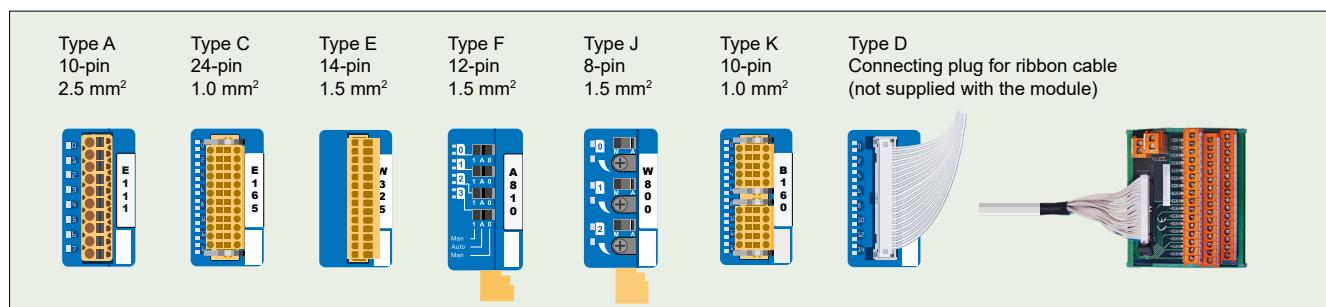


- USB Device: RNDIS driver enabled, Firewall open for engineering tool IP address 169.254.1.1, Subnet 255.254.0.0
- Ethernet 1: Disabled
- Ethernet 2: Disabled
- Serial Com Port 2: Disabled
- Serial Com. Port on slot A: Disabled

Dimension Drawing


PCD3.M6893

PCD3.C200

PCD3.C100


Dimensions like PCD3.C200
(see drawing above)

Planning data

- Step files (3D)
- BIM objects

The data can be downloaded with the following link:
<https://sbc-support.com/en/services/bim-building-information-model/>

Connecting plugs/terminals

▲ Spare terminals, ribbon connectors with system cables and separate terminals are ordered as accessories.

Compatibility note

	Minimum required firmware package for PCD3.A810 and PCD3.W800 modules: 4.x.x Minimum required firmware package for all remaining I / O modules: 3.0.0
--	--

Digital input modules

Type	Number of inputs	Input		Electrical isolation	Internal current draw		I/O connector type ³⁾
		voltage	delay		5 V-Bus ¹⁾	V-Bus ²⁾	
PCD3.E110	8	15...30 VDC	8 ms	---	24 mA	---	A
PCD3.E111	8	15...30 VDC	0.2 ms	---	24 mA	---	A
PCD3.E160	16	15...30 VDC	8 ms	---	10 mA	---	D
PCD3.E161	16	15...30 VDC	0.2 ms	---	10 mA	---	D
PCD3.E165	16	15...30 VDC	8 ms	---	10 mA	---	C
PCD3.E166	16	15...30 VDC	0.2 ms	---	10 mA	---	C
PCD3.E500 **	6	80...250 VAC *	20 ms	•	1 mA	---	A
PCD3.E610	8	15...30 VDC	10 ms	•	24 mA	---	A
PCD3.E613 **	8	30...60 VDC	9 ms	•	24 mA	---	A

* These ratings are not UL-listed

** Not recommended for new projects

Digital output modules

Type	Number of outputs	Output switching capacity		Electrical isolation	Internal current draw		I/O connector type ³⁾
		DC	AC		5 V-Bus ¹⁾	V-Bus ²⁾	
PCD3.A200	4, relay (make) *	2 A/50 VDC **	2 A/250 VAC	•	15 mA	---	A
PCD3.A210 ****	4, relay (break) *	2 A/50 VDC **	2 A/250 VAC	•	15 mA	---	A
PCD3.A220	6, relay (make)	2 A/50 VDC **	2 A/250 VAC	•	20 mA	---	A
PCD3.A251	8, relay (6 changeover + 2 make)	2 A/50 VDC ***	2 A/48 VAC	•	25 mA	---	C
PCD3.A300	6, transistor	2 A/10...32 VDC	---	---	20 mA	---	A
PCD3.A400	8, transistor	0.5 A/5...32 VDC	---	---	25 mA	---	A
PCD3.A410	8, transistor	0.5 A/5...32 VDC	---	•	24 mA	---	A
PCD3.A460	16, transistor	0.5 A/10...32 VDC	---	---	10 mA	---	D
PCD3.A465	16, transistor	0.5 A/10...32 VDC	---	---	10 mA	---	C
PCD3.A810 Manual operation	4, relay (2 changeover + 2 make)	2 A/50 VDC 2 A/50 VDC	5 A/250 VAC 6 A/250 VAC	• •	55 mA	---	F

* With contact protection

** For UL61010 compliant operation the following switching capacity applies: 2 A/35 VDC

*** For UL61010 compliant operation the following switching capacity applies: 2 A/30 VDC

**** Not recommended for new projects

Analogue input modules

Type	Number of channels	Signal ranges/description	Resolution	Electrical isolation	Internal current draw		I/O connector type ³⁾
					5 V-Bus ¹⁾	+ V-Bus ²⁾	
PCD3.W200	8 In	0...+10 V	10 Bit	---	8 mA	5 mA	A
PCD3.W210	8 In	0...20 mA ⁴⁾	10 Bit	---	8 mA	5 mA	A
PCD3.W220	8 In	Pt1000: -50°C...400°C Ni1000: -50°C...+200°C	10 Bit	---	8 mA	16 mA	A
PCD3.W300	8 In	0...+10 V	12 Bit	---	8 mA	5 mA	A
PCD3.W310	8 In	0...20 mA ⁴⁾	12 Bit	---	8 mA	5 mA	A
PCD3.W340	8 In	0...+10 V/0...20 mA ⁴⁾ Pt1000: -50°C...400°C Ni1000: -50°C...+200°C	12 Bit	---	8 mA	20 mA	A
PCD3.W350	8 In	Pt100: -50°C...+600°C Ni100: -50°C...+250°C	12 Bit	---	8 mA	30 mA	A
PCD3.W360	8 In	Pt1000: -50°C...+150°C	12 Bit	---	8 mA	20 mA	A
PCD3.W380	8 In	-10 V...+10 V, -20 mA...+20 mA, Pt/Ni1000, Ni1000 L&S, NTC10k/NTC20k (configuration using software)	13 Bit	---	25 mA	25 mA	2x K
PCD3.W305	7 In	0...+10 V	12 Bit	•	60 mA	0 mA	E
PCD3.W315	7 In	0...20 mA ⁴⁾	12 Bit	•	60 mA	0 mA	E
PCD3.W325	7 In	-10 V...+10 V	12 Bit	•	60 mA	0 mA	E
PCD3.W745	4 In	Temperature module for TC type J, K and 4-wire Pt/Ni 100/1000	16 Bit	•	200 mA	0 mA	⁵⁾

Analogue output modules

Type	Number of channels	Signal ranges/description	Resolution	Electrical isolation	Internal current draw		I/O connector type ³⁾
					5 V-Bus ¹⁾	+ V-Bus ²⁾	
PCD3.W400	4 Out	0...+10 V	8 Bit	---	1 mA	30 mA	A
PCD3.W410	4 Out	0...+10 V/0...20 mA/4...20 mA jumper-selectable	8 Bit	---	1 mA	30 mA	A
PCD3.W600	4 Out	0...+10 V	12 Bit	---	4 mA	20 mA	A
PCD3.W610	4 Out	0...+10 V/-10 V...+10 V/ 0...20 mA/4...20 mA jumper-selectable	12 Bit	---	110 mA	0 mA	A
PCD3.W605	6 Out	0...+10 V	10 Bit	•	110 mA	0 mA	E
PCD3.W615	4 Out	0...20 mA/4...20 mA parameters can be set	10 Bit	•	55 mA	0 mA	E
PCD3.W625	6 Out	-10 V...+10 V	10 Bit	•	110 mA	0 mA	E
PCD3.W800	4 Out, 3 of which are manually operated	0...+10 V, short circuit-proofed	10 Bit	---	55 mA	35 mA ⁶⁾	J

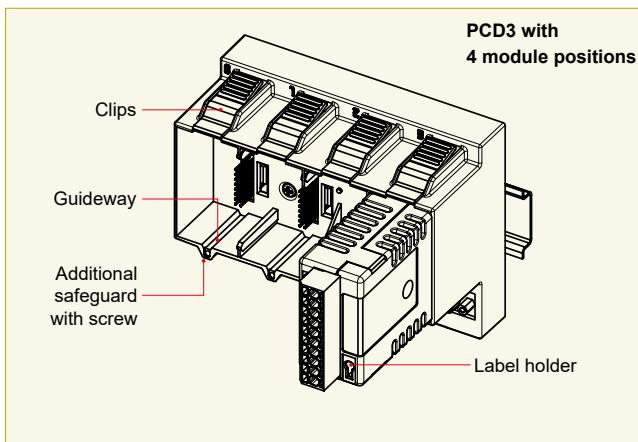
Overview of the internal bus capacity of the module holders

	PCD3.M6893	PCD3.C200
1) Internal 5V	600 mA	1500 mA
2) Internal +V (24 V)	100 mA	200 mA

The electrical requirement of the internal +5V and +V bus for the I/O modules can be calculated in the QronoX I/O Calculator.

- 3) Plug-in I/O terminal blocks are included with I/O modules.
Spare terminals, ribbon connectors with system cables and separate terminals are ordered as accessories.
- 4) ... 20 mA via user program.
- 5) With soldered spring terminal block.
- 6) At 100% output value and 3 kΩ load.

Manual control modules


PCD3.A810
Relay outputs,
2 changeover and 2 make

PCD3.W800
4 analogue outputs
(3 of these operable)

Insertion of I/O modules

▲ Simple exchange of I/O modules

Over 40 modules available with different functionalities

Types

- **PCD3.Axxx** Digital output modules
- **PCD3.Exxx** Digital input modules
- **PCD3.Wxxx** Analogue input/output modules

The PCD3.C200 is used to extend the I/O bus or for the internal power supply +5V and +V (24V) to a module segment.

Please note the following rules:

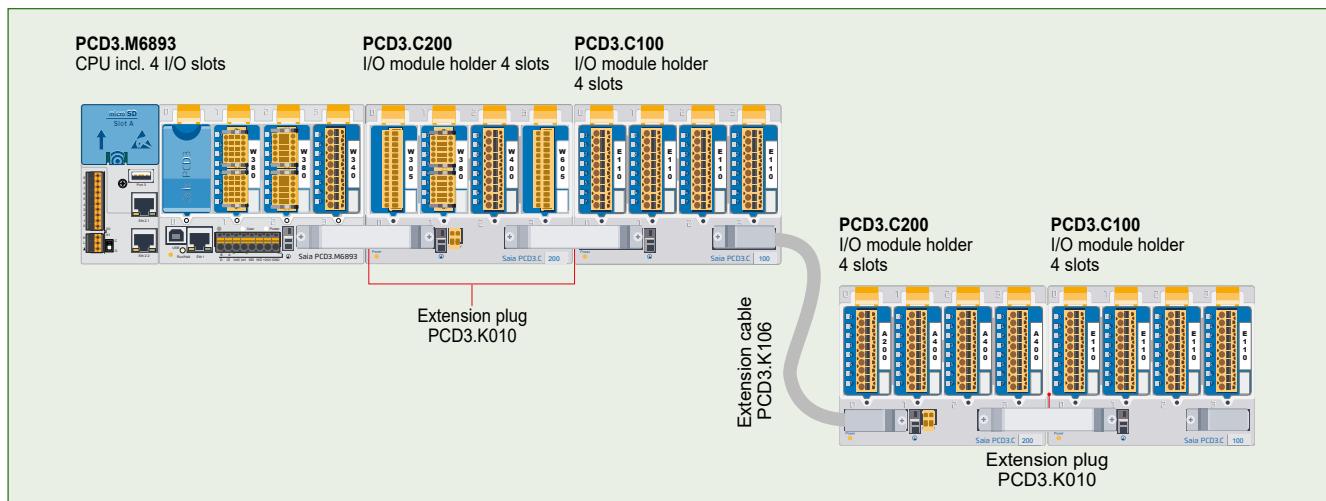
- **Mandatory:** Insert a PCD3.C200 after the PCD3.M6893 and after each cable (at the start of a row).
- Use a maximum of five PCD3.K106/K116 cables.
- Do not use more than six PCD3.C200s in a single configuration, or the time delay will exceed the I/O access time.
- If an application is mounted in a single row (max. 15 module holders), then after five PCD3.C100 a PCD3.C200 must be used to amplify the bus signal (unless the configuration ends with the fifth PCD3.C100).
- If the application is mounted in multiple rows, the restricted length of cable means that only three module holders (1x PCD3.C200 and 2x PCD3.C100) may be mounted in one row.

The following aspects should be considered when planning PCD3 applications:

- In keeping with lean automation, it is recommended to leave the first slot in the CPU basic module free for any subsequent expansions. This slot can accommodate simple I/O modules but also communication modules.
- The total length of the I/O bus is limited by technical factors; the shorter, the better.

The following aspects should be considered for UL conform applications:

- The PCD3.M6893 base module may only be used with I/O modules listed in UL 61010.
- The PCD3.M6893 base module is to be powered by an UL Class 2 certified power supply.
- Use only 60°/75° copper conductors.
- This device shall be installed in an industrial control panel or other suitable rated enclosure.
- If the equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.


PCD3 I/O modules are not hot-plug capable:

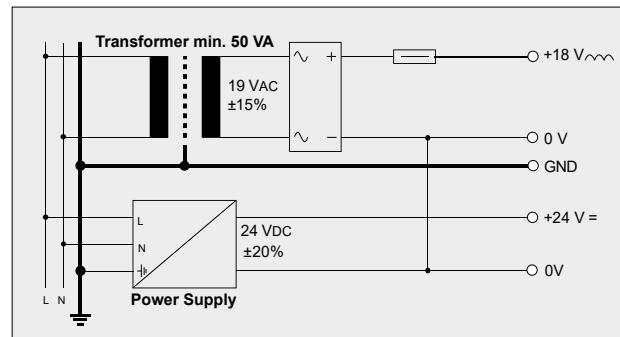
- Carefully insert and remove the I/O modules after switching off the power supply (24V).

Information for Project Planning with PCD3 Module Holders

The internal load current taken by the I/O modules from the +5V and +V (24V) supply must not exceed the maximum supply current specified for the CPUs, RIos or PCD3.C200 module holders.

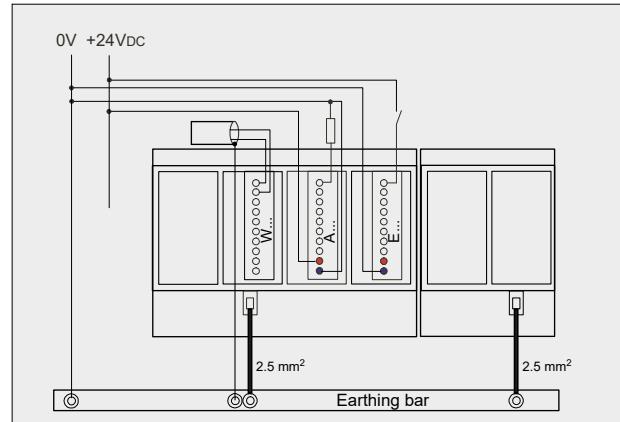
Example calculation for the current consumption of the internal +5V and +V (24V) bus of the I/O modules

Consumption M6893 + C200 + C100			Consumption C200 + C100		
Module	Internal 5V	Internal +V (24V)	Module	Internal 5V	Internal +V (24V)
Not used					
W380	25 mA	25 mA	A200	15 mA	
W380	25 mA	25 mA	A810	40 mA	
W340	8 mA	20 mA	A810	40 mA	
Total M6893	58 mA	70 mA	A860	18 mA	
W340	8 mA	20 mA	Total C200	113 mA	
W340	8 mA	20 mA	A460	10 mA	
W610	110 mA	0 mA	A460	10 mA	
E160	10 mA		A460	10 mA	
Total C200	136 mA	40 mA	W380	25 mA	25 mA
E160	10 mA		Total C100	55 mA	25 mA
E160	10 mA		Total C200	168 mA	25 mA
E160	10 mA				
Total C100	40 mA	0			
Total C200	176 mA	40 mA			

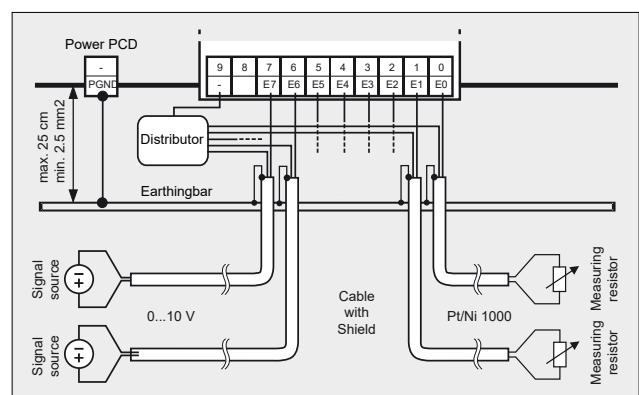
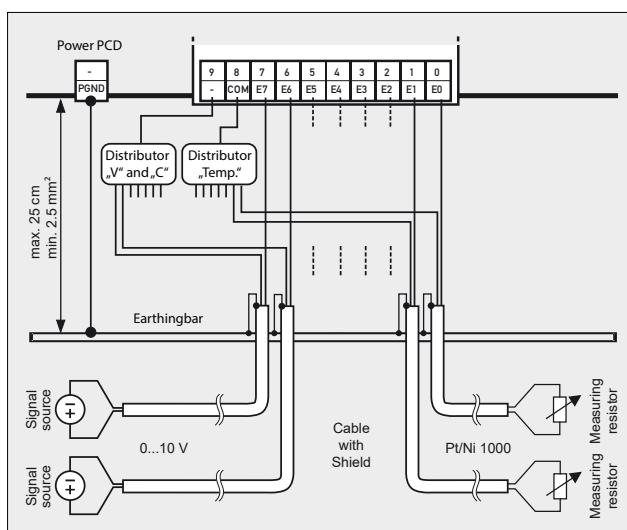

The calculation example shows that internal capacity is maintained in the CPU basic module PCD3.M6893 and the holder module PCD3.C200. The CPU basic module has a sufficient reserve to receive an additional communication module in the empty slot 0. The holder module PCD3.C200 also has sufficient reserves to connect an additional PCD3.C100 holder module. The power consumption of the internal +5V and +V (24 V) bus for the I/O modules is automatically calculated in the QronoX I/O-Calculator Excel-sheet.

Power supply and connection concept

External power supply


A two-way rectified supply can be used for most modules.

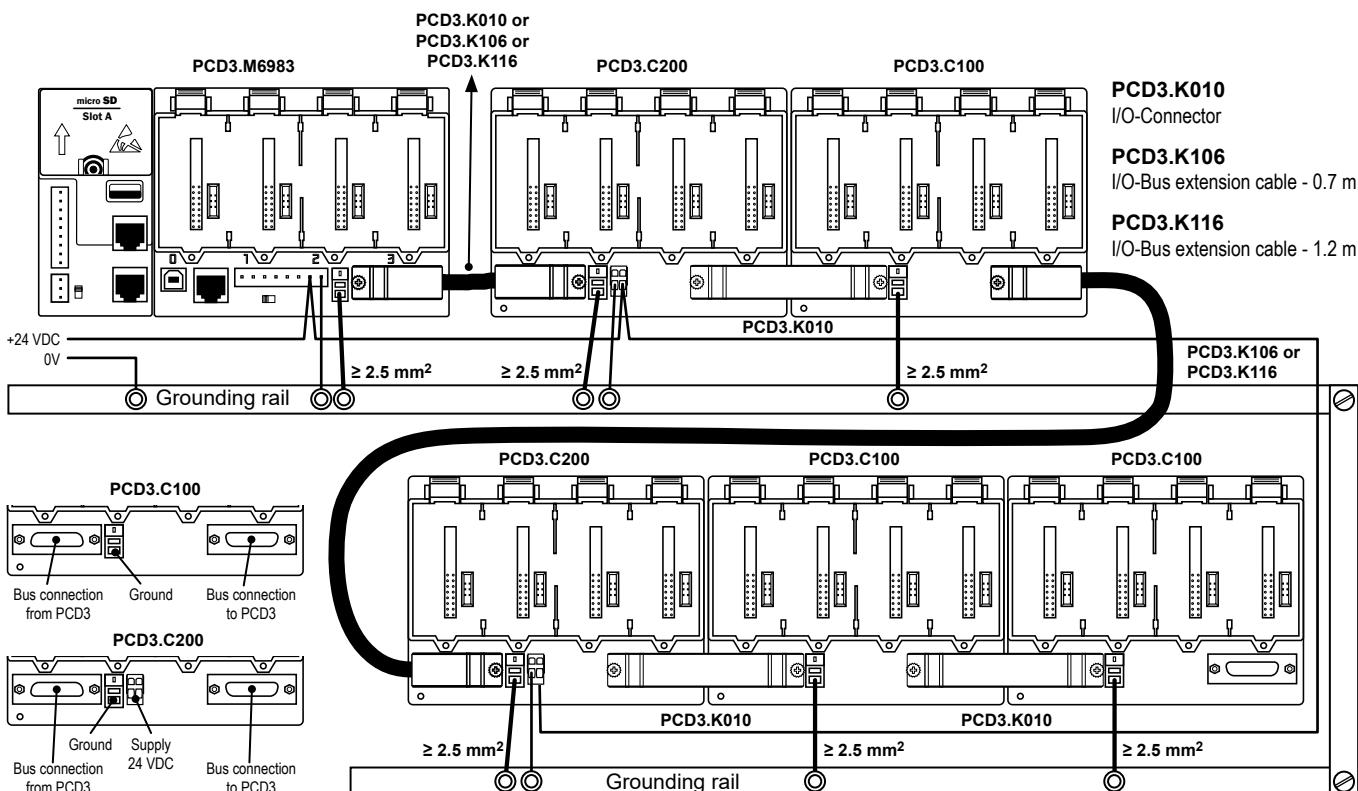
It is generally recommended to use robust and interference-resistant SBC power supply units with 24 VDC output.



Grounding and connection plan

- The zero potential (GND) of the 24 V supply is connected to the GND and the controller's grounding terminal. If possible, this should be connected to the ground bar with a short wire (<25 cm) with a cross section of 1.5 mm². The same applies to the negative connection to the interrupt terminal.
- Any shielding of analogue signals or communication cables should also be brought to the same grounding potential, either via a negative terminal or via the ground bar.
- All negative connections are linked internally. For flawless operation, these connections should be reinforced externally by short wires with a cross section of 1.5 mm².

Grounding and connection concept analogue inputs that are not electrically isolated (PCD3.W2x0, PCD3.W3x0)

Signal sources (such as temperature sensors) should be connected direct to the input module wherever possible. To obtain optimum measurement results, avoid connection to a ground bar. Additional external GND connections to the sensor signals may result in equalising currents which distort the measurement. If shielded cables are used, the shielding should be continued to a ground bar.


Connection concept for PCD3.W2x0

The reference potential of voltage and current inputs must be wired to a common GND distributor at the “-” terminal. Temperature sensors must be wired to a common GND distributor at the “COM” terminal. The module PCD3.W380 has a 2-wire connection for the inputs and requires no external GND distributor.

Connection concept for PCD3.W3x0

The reference potential of voltage and current inputs must be wired to a common GND distributor at the “-” terminal. Temperature sensors must be wired to a common GND distributor at the “COM” terminal. The module PCD3.W380 has a 2-wire connection for the inputs and requires no external GND distributor.

Extension module holders PCD3.C200 and PCD3.C100

The PCD3.C200 module holders provide the following internal supply currents to the modules plugged in or connected to them:

PCD3.C200	
5V Bus	1500 [mA]
+V Bus	630 [mA]

Any shielding of analog signals or communication cables should also be brought to the same grounding potential, either via a negative terminal or via the ground bar.

All negative connections are linked internally. For flawless operation, these connections should be reinforced externally by short wires with a cross section of 1.5 mm².

It is recommended to wire the I/O modules from a cable duct.

The following aspects should be considered when planning PCD3 applications:

- Insert a PCD3.C200 after each cable (at the start of a row)
- The total length of the I/O bus is limited by technical factors; the shorter, the better.
- Do not use more than six PCD3.C200s in a single configuration, or the time delay will exceed the I/O access time.

Conformity to CE directive	
This system is developed according to the international standard EN/IEC61131-2:2007 and so complies with European directives concerning EMC Directive 2014/30/EU, Low voltage Directive 2014/35/EU and Restricted of Hazardous substances (ROHS) 2011/65/EU.	

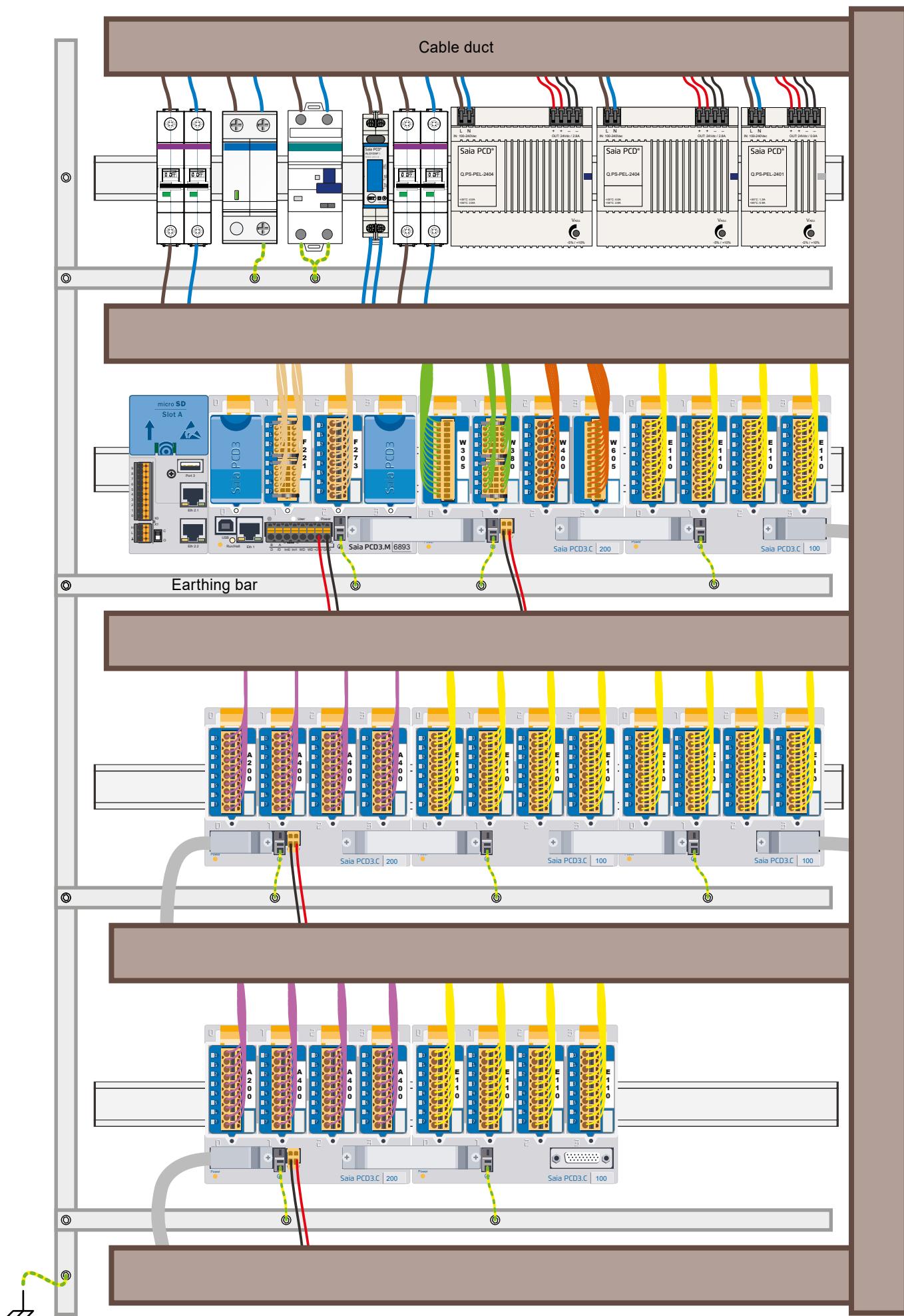
Certificates	
	EAC Mark of Conformity for Machinery Exports to Russia, Kazakhstan or Belarus

UL Compliance, according to the following conditions	
This device is suitable for use in a 55 °C maximum ambient!	
Use of 60/75 °C copper (CU) wire only.	
If use of Screw Terminal Maximum tightening torque 0.5 Nm.	2D85 IND.CONTEQ.

WEEE Directive 2012/19/EC Waste Electrical and Electronic Equipment directive

	WEEE Directive: At the end of their useful life the packaging and product should be disposed of by a suitable recycling centre. Do not dispose of with normal household waste. Do not burn.
--	---

This symbol on our product shows a crossed-out "wheelie-bin" as required by law regarding the Waste of Electrical and Electronic Equipment (WEEE) disposal. This indicates your responsibility to contribute in protecting the environment by proper disposal of this waste, i.e., not disposing of this product with your other wastes. To know the right disposal mechanism, please check the applicable law.


Further information and support

Further information and Software/QronoX are available on www.sbc-support.com.

Disclaimer

The plant engineer contributes his share to the reliable operation of an installation. He is responsible for ensuring that controller use conforms to the technical data and that no excessive stresses are placed on it, e.g. with regard to temperature ranges, over voltages and noise fields or mechanical stresses. In addition, the plant engineer is also responsible for ensuring that a faulty product in no case leads to personal injury or even death, nor to the damage or destruction of property. The relevant safety regulations must always be observed. Dangerous faults must be recognized by additional measures and any consequences prevented. Consistent use of the diagnostic elements of the PCD, such as the watchdog, exception organization blocks (XOB) and test or diagnostic instructions shall be made.

An example of power supply and connection concept

ATTENTION

These devices must only be installed by a professional electrician. Otherwise, there is the risk of fire or the risk of an electric shock.

WARNING

Product is not intended to be used in safety critical applications, using it in safety critical applications is unsafe.

WARNING - Safety

The unit is not suitable for the explosion-proof areas and the areas of use excluded in EN 61010 Part 1.

WARNING - Safety

Check compliance with nominal voltage before commissioning the device (see type label).
Check that connection cables are free from damage and that, when wiring up the device, they are not connected to voltage.
Do not use a damaged device!

NOTE

In order to avoid moisture in the device due to condensate build-up, acclimatise the device at room temperature for about half an hour before connecting.

CLEANING

The device can be cleaned in dead state with a dry cloth or cloth soaked in soap solution.
Do not use caustic or solvent-containing substances for cleaning.

MAINTENANCE

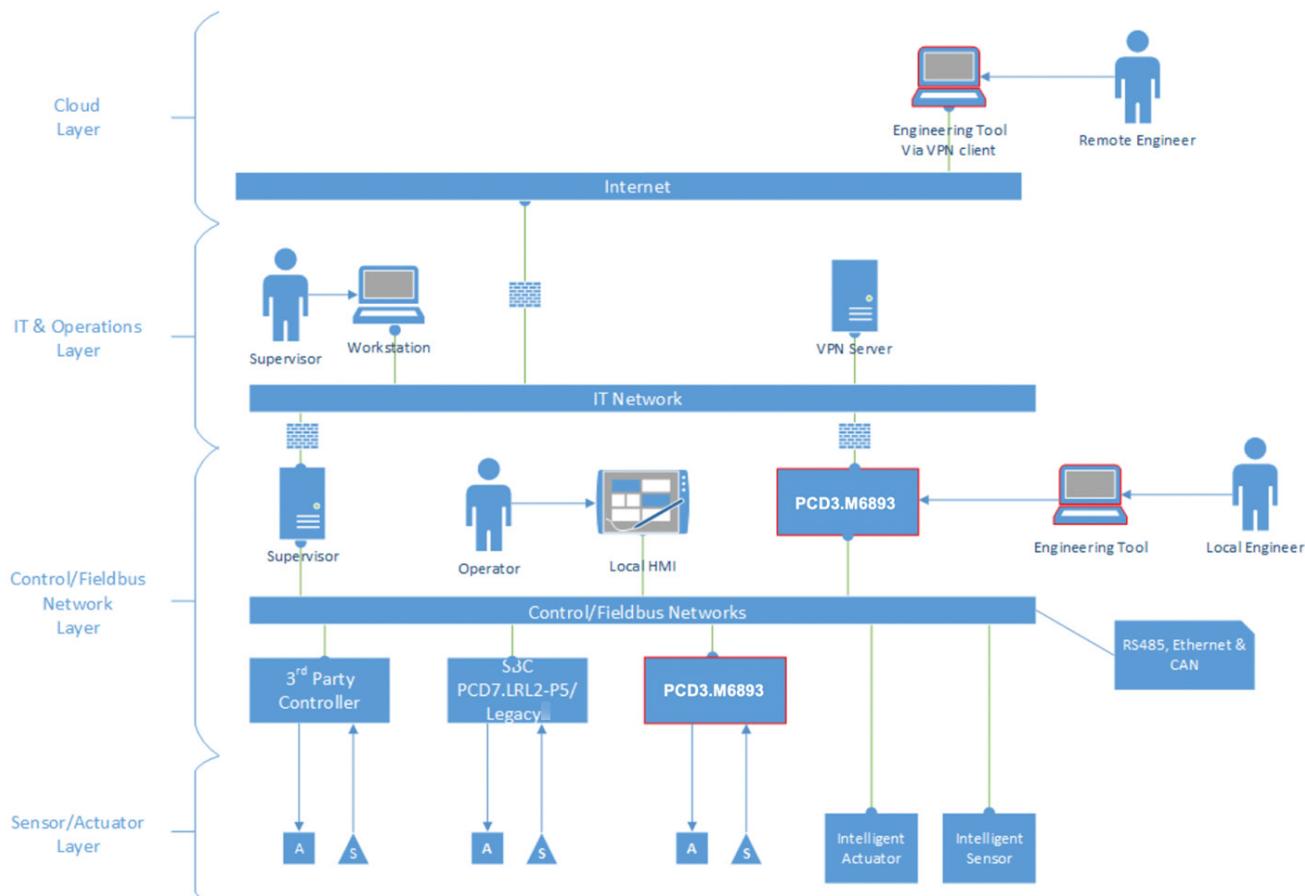
These devices are maintenance-free.
If damaged, no repairs should be undertaken by the user.

GUARANTEE

Opening the module invalidates the guarantee.

Observe this instructions (data sheet) and keep them in a safe place.
Pass on the instructions (data sheet) to any future user.

WEEE Directive 2012/19/EC Waste Electrical and Electronic Equipment directive
The product should not be disposed of with other household waste. Check for the nearest authorized collection centers or authorized recyclers. The correct disposal of end-of-life equipment will help prevent potential negative consequences for the environment and human health.



EAC Mark of Conformity for Machinery Exports to Russia, Kazakhstan or Belarus.

UAE RoHS EASY certification

Safety instructions for the PLC PCD3.M6893

Saia PCD3.M6893 can be used in a highly networked environment and as such must be securely configured to reduce the risk of unauthorized access.

Internet Connection

The device must not be connected directly to the internet without having proper precaution like a firewall between the Internet and the PCD3.M6893.

Network Segmentation

The PCD3.M6893 is equipped with multiple network interfaces. The system traffic does not route between the interfaces. The system should be constructed as in the picture above. Having different networks for control and IT networks. Separate critical from non-critical elements by connecting them to different segments.

If networks cannot physically be separated, they at least must be firewalled off each other.

Configure hosts and devices to use static IP addresses and network settings, where feasible.

Selection of Protocols

Wherever possible select encrypted and authenticated protocols.

Firewall

While the PCD3.M6893 is equipped with a built-in firewall it is better to use dedicated firewall between the networks.

Remote Access

In order to perform remote access to the system, a VPN must be used to tunnel network traffic securely from the remote engineering workstation into the IT network of the control infrastructure. The IT network should be configured in such a way that only the engineering tool communication protocol is allowed to pass from VPN network to the controller.

Secure Remote Update

To update the firmware of a PCD3M6893 controller, a VPN connection as outlined in section "Remote Access" is required. Once the VPN Server and Client are securely configured the use the firmware downloader in the engineering tool as usual to install the latest firmware for the PCD3.M6893.

Physical Access Control

Fieldbus networks are inherently insecure, also the PCD3.M6893 is not secured against physical modification like manipulating I/O modules and commonly used IT protocols like DHCP cannot be secured. It is therefore mandatory that the complete control infrastructure, including IT infrastructure and all equipment is physically protected against unauthorized access.

Selection of Equipment

Only use equipment developed according to secure practices.

Network Elements

All other network elements (managed switches, firewall, etc.) must be configured in a secure manner in accordance with their own security instructions.

Secure Development Practices

The PCD3.M6893 is freely programmable via IEC applications in the programming tool. Via SysXxxx and CAA libraries it is possible to access system resources of the operating system like file systems, serial interfaces, network interfaces, etc.(see www.helpme-codesys.com) While this level of access gives nearly unlimited flexibility it also requires discipline to develop IEC application in a secure manner.

This section of the manual outlines secure development practices that must be followed in order to keep the system secure. The secure practices outlined here are not comprehensive, be sure to consult specialized documentation like the OWASP (https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices - Quick_Reference_Guide).

Input Data Validation

Treat all data from external entities as untrusted. This is especially the case when receiving data from an external interface like a serial line or a network interface. Validate all input data by type, length and use whitelist of acceptable values.

Output Encoding

When storing data to a file or transmitting it over a network ensure proper escaping related to the output format.

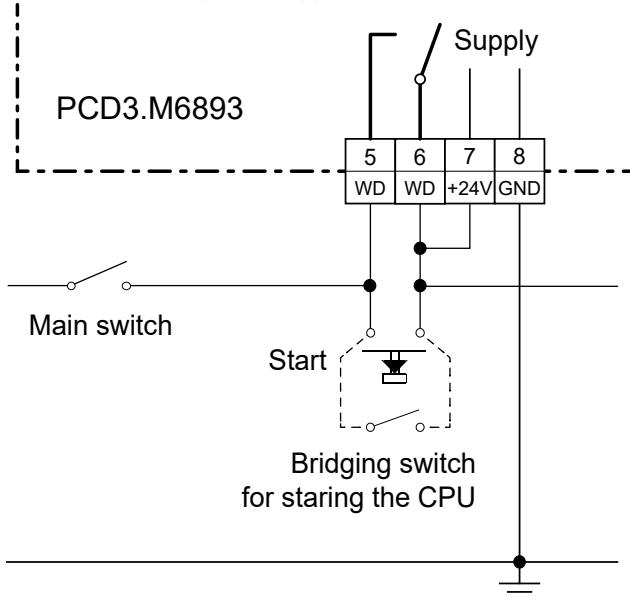
Communication Protocols

Implementing communication protocols requires special care. If the protocol allows use encrypted communication. If using TLS make sure you are using TLS 1.2 or higher only.

If session identifiers are used, ensure that session ids are completely random, not reused and delete after a session has been terminated.

Terminate the communication session if an invalid session id is used.

Use of Watchdog


The system is equipped with two user programmable watchdogs. Watchdogs can be used to bring a system into a defined state when a task is running out of defined bounds.

Cycle Time Watchdog

In the 'Task Configuration' of an IEC application the Cycle Time watchdog can be programmed. Use this watch to protect against programming errors in individual tasks. If a task is exceeding the maximum allowed time, it will be killed by the runtime system.

Watchdog Relay

The system is equipped with a physical relays contact. The watchdog relays can be programmed in such a way, that the contact opens if it is not triggered in a configurable interval. By having the watchdog contact in line with the power supply as outlined below, it will allow to shut down the system completely in case the watchdog is not triggered in the defined interval.

Use of Task Priority

Cyclic tasks in IEC application can be assigned to different priorities, from background task to real-time tasks. Be sure to structure the task in such a manner, that only time critical tasks are running with real-time priority. No real-time task should have long running loops or should call synchronous SysXxxx functions as this may block the whole system.

Use of IEC libraries

Only use libraries from trusted sources. Use the library manager to check that the library is correctly signed. Don't use libraries that are not signed or libraries of which the signature is invalid.

Creating and distributing Libraries

Follow the guidelines part of the CODESYS manual. Ensure that the libraries are distributed as 'compiled' library otherwise the source code of the library is accessible for everyone having access to the library. Sign the library with your X.509 certificate.

Secure Device Configuration

Follow the following guidelines to ensure a secure configuration of the PCD3.M6893 controller

Network Ports

Disable all network ports that are not in use.

Firewall

PCD3.M6893 is equipped with a built in IP packet filter firewall. The firewall is by default configured so that the programming tool on the USB service port is able to communicate with the device. All other traffic, in- or outbound is blocked by default. You must explicitly add rules to allow traffic to get in or out of the device. It is important that the firewall rules are as strict as possible. The firewall must be kept enabled, in order to add a layer of defense.

Internet Detector

This device is not designed to be directly connected to the Internet. In order to protect against accidental Internet connection or misconfiguration of the firewall, PCD3.M6893 is equipped with an Internet Detector service that disables the connecting port. This service is enabled by default and should be disabled if the device is located behind a properly configured firewall and Internet services must be consumed.

Account management

The unified account management on PCD3.M6893 provides a role-based account management that is used for all services on the device. Each service on the device allows fine grained access control for all data points and actions. Ensure that accounts are given permission on the principle of least privilege. That means, each account should only be given access to elements it really needs having access to in order that it can perform the desired operations. If an account is only supposed to be used for a limited time period, e.g. because the account is for an employee with limited contract term, make sure that is reflected in the account. Enable account lockout to prevent against brute force attacks. Delete accounts that are no longer in use. Enable min. and max. password life time to force user to periodically change their password.

Special Roles

Accounts with role 0 are Device Administrator accounts. Such accounts have full access on the device.

Accounts with role 1 are User Administrator accounts. Such accounts manage other accounts as long as the managed accounts have the same or less roles than the device administrator account.

We do not recommend associating the User account for BACnet Communication.

Secure Engineering Tool

Follow the following guidelines to ensure QronoX ECS tool secure.

User Account Control

Configuring Windows User Account Control (UAC) properly helps in preventing unauthorized elevation of privileges:

- Open the Control Panel and navigate to 'User Accounts'. Click on 'Change User Account Control settings'.
- Select "Always Notify" or "Notify me only when apps try to make changes to my computer (default)" for most secure configurations.

Windows Registry

1. Identify critical registry hives and keys that should be protected, including:

- **Boot and Logon Processes**

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\ Services: Controls system services that start at boot time. HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\ Windows\CurrentVersion\Run: Contains programs set to run at logon.

- **Execution Flow**

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\ Windows NT\CurrentVersion\Image File Execution Options: Used for debugging or modifying the behavior of executables.

- **Authentication**

HKEY_LOCAL_MACHINE\SAM: Contains security account manager (SAM) data for user authentication. (Highly sensitive and usually only accessible by the system.)

- **System Policies**

HKEY_LOCAL_MACHINE\SOFTWARE\Policies: Stores configuration for system and user policies.

2. Use Windows Group Policy or local security policies to set permissions on these registry keys. Ensure that only trusted administrators have write access.
3. Regularly audit registry permissions and monitor for unauthorized changes using tools like Windows Event Viewer or third-party monitoring solutions.

Certificate Management

General

The PCD3.M6893 is equipped with four services, CODESYS, HTTPS server, OPC UA and IEEE 802.1X Client, that uses digital encryption certificates to ensure the identity of its communication party and/or to prove the device's own identity. At first startup, or factory reset, these services generate a self-signed certificate. While this helps commissioning the system, it is not secure and must be changed before the system is put into operation.

Do not put the PCD3.M6893 into operation with Self-signed certificates

The use of self-signed certificates is handy when in development, but products should not be shipped to customers with self-signed certificates. You should be either creating an initial certificate for your product or you should have a mechanism for the end customer to provision the product and allow them to assign a corporate signed certificate to the device. You must inform your customer of the certificate management requirements of your product.

CODESYS

The PCD3.M6893 uses a CODESYS RTS for the PLC functionality. The communication between QronoX ECS and the controller is always encrypted. The device generates an initial self-signed certificate. This certificate is exchanged by a custom certificate via the PLC shell inside of QronoX ECS. Consult the tool's help for further information.

HTTPs/Web Server

The HTTPs/Web Server of PCD3.M6893 supports custom certificates. The Web Server system configuration page in the programming tool allows installing a new certificate. The recommended way of doing so is to let the device generate a Certificate Signing Request (CSR). The CSR can be submitted to a trusted Certificate Authority (CA) which in turn issues the device certificate. This certificate can be installed via the Web Server system configuration page of the tool. Consult the tool's help for further information.

OPC UA

The OPC UA server of PCD3.M6893 can meet the strict security requirements of the OPC UA specification. This is only achievable if security in the system configuration is enabled and is used (the default is to have security enabled). As a product developer we strongly recommend ensuring secure channel communication is turned on in your product and the None-None-Anonymous security profile and the Accept all certificates option are only enabled if absolutely certain this is a requirement. Having security enabled and not having the None-None-Anonymous security profile as well as Accept all certificates off means all OPC UA clients connecting to your product must do so in a secure manner.

Please also check the available security profiles to ensure the type of security required matches what you are configuring for your environment.

OPC UA server certificates, issuer certificates as well as trusted client certificates is done via the Files tab in the CODESYS Devices object.

IEEE 802.1x Client

The PCD3.M6893 can meet stringent security requirements when configured with IEEE 802.1x client enabled and connected to a Managed Switch and RADIUS Server (Remote Authentication Dial-In User Service). As a product developer, we recommend using an IEEE 802.1x client with EAP-TLS mode. The PCD3.M6893's IEEE 802.1x client supports custom certificates. The 802.1x File Transfer page in the programming tool allows you to install a new certificate. The Managed Switch and the RADIUS Server validate the loaded certificate to allow network access. For more information, refer to the tool's Help.

IEC 60870-5-104 Server

IEC 60870-5-104 Server functionality on PCD3.M6893, requires license from Codesys. We strongly recommend ensuring IEC 60870-5-104 Server functionality is configured and enabled in a trusted environment.

Data Privacy

Stored data on the device

The PCD3.M6893 stores the following data elements:

- Device configuration: IP address, Firewall rules, NTP configuration
- User Management: Accounts, passwords, roles, permissions etc.
- Audit log: System log messages, all actions from all user
- CODESYS: PLC application and CODESYS runtime system configuration
- SD Card: Backups & user data

All data on the device is stored encrypted and is bound to the device. The only exception is backup files, which are encrypted but can be transferred to other devices and be restored there.

Stored project data

Use project encryption to store project data. To do this, use the 'Security Screen' and set the project file encryption technology to 'Encryption'. Though user has an option to choose between password, dongle or certificates, we recommend using certificates as it meets all the security needs and avoid using password for encryption of project data.

Device Configuration

The device configuration can be changed with the programming tool by accounts with the appropriate access rights.

Administration of Accounts

A device or account administrator can manage accounts on the device using the Device User Management node in the programming tool. The user management can only be uploaded and downloaded as one piece.

Roles

Create roles to define permissions to the system. Available system functionalities can be enabled/disabled, or access rights can be set.

Profiles

Create profiles to set up password and account settings. Assign roles to a profile to set the profile permissions.

Accounts

Assign a profile to an account. Accounts can be locked or set to active/inactive for a certain period. A user or system has to login with a specific account to access the device.

Deleting Audit Log

Device administrator accounts can delete the complete audit log by using the programming tool audit log viewer. Programming tool projects.

CODESYS

The PLC application can be changed and loaded with the programming tool. Only device administrators can do that.

SD Card

That data on the user file system, as well as the backup files on the SD card can be managed via the File System Explorer in the programming tool. Access to the SD card data is restricted to Device Administrator accounts.

Erase All Data/Factory Reset

All data on the device can be deleted by pressing the service button for 30 seconds when during system power up.

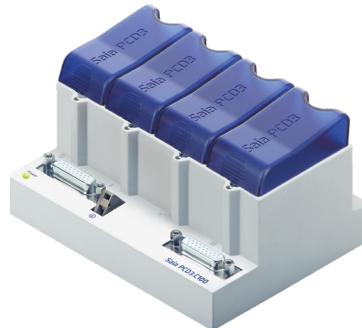
Data Privacy Statement

Saia-Burgess Controls AG's privacy statement can be found here:

<https://www.saia-pcd.com/en-gb/privacy-statement/>

Avoid these features from CODESYS

We do not recommend users to use the below options provided by CODESYS.


- Project Menu Bar -> User Management
- Tools Menu Bar -> Options -> Device Description Download
- Tools Menu Bar -> Scripting -> Execute Script File.

PCD3.M6893

PCD3.C200

PCD3.C100

Order details

Type	Short description	Description	Weight
PCD3.M6893	CPU base units for 4 plug-in I/O modules	PCD3 controller without battery with 1 GByte RAM and 2 GByte Flash for operating system and user program, 1 Socket for user data micro-SD card, max. 32 GByte, 2 Ethernet, 1 RS-485, 1 socket for communication modules, 1 USB Device port for programming and service, 1 USB host, 1 CAN port (20a and 20b on demand) 2 interrupt inputs, 1 watch dog relay, extendable up to 1024 I/O. Supported PCD3 - I/O Modules: PCD3.Ax, PCD3.Ex, PCD3.W2x, PCD3.W3x, PCD3.W4x, PCD3.W6x, PCD3.W745, PCD3.W800 and PCD3.S100	560 g
PCD3.C200	Extension module holder	Extension module holder for 4 I/O modules with terminal connectors for external 24 VDC power supply	440 g
PCD3.C100	Extension module holder	Extension module holder for 4 I/O modules	420 g
PCD3.R010	Battery module	Battery module plug-in onto I/O Slot #3	60 g
PCD7.R-MSD1024	Micro SD card 1024 MB	Saia PCD® uSD Flash memory card 1024 MByte (included SD Flash adapter)	10 g

Slot covers
410475150 /
410475020

8-pin
spring terminal block
32341564-001

10-pin
spring terminal block
32341217-001

3-pin
spring terminal block
32341216-001

Connecting plug
PCD3.K010

Extension cable 0.7 / 1.2 m
PCD3.K106 / PCD3.K116

Accessories

Type	Short description	Description	Weight
32341564-001	8-pin spring terminal block	Plug-in spring terminal block, 8-pole 0.2...2.5 mm ² (black block)	15 g
32341217-001	10-pin spring terminal block	Plug-in spring terminal block, 10-pole, 0.14...1.5 mm ² (black block), labelled 0 to 9	7 g
32341216-001	3-pin spring terminal block	Plug-in spring terminal block, 3-pole, 0.14...1.5 mm ² (black block), labelled 0 to 2	3 g
410475150	Slot cover	Slot cover for unused PCD3 I/O slots (with SBC logo)	8 g
410475020	Slot cover	Slot cover for unused PCD3 I/O slots (neutral - without SBC logo)	8 g
PCD3.K010	Connection plug	Connection plug PCD3.M/T/C to PCD3.Cx00	40 g
PCD3.K106	Extension cable 0.7 m	Extension cable for PCD3.M/T/C to PCD3.Cx00 (length 0.7 m)	140 g
PCD3.K116	Extension cable 1.2 m	Extension cable for PCD3.M/T/C to PCD3.Cx00 (length 1.2 m)	180 g

Saia-Burgess Controls AG

Route Jo-Siffert 4 | 1762 Givisiez, Switzerland.
Switchboard: T +41 26 580 30 00

Support: T +41 26 580 31 00

www.saia-pcd.com

support@saia-pcd.com | www.sbc-support.com
